ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2021

Solutions - Homework 3

(Due date: March leth @ 11:59 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)

= The purpose of this exercise is to explore how to rapidly fill up LUT values and verify the correct operation.
Here, you are asked not to write VHDL code, but rather to setup the parameters for it, synthesize, and simulate.

= LUT approach for calculating arbitrary functions: We want to implement the following system.
v The figure shows three 3 LUT 8-to-12, where each LUT holds the pre-computed results of 3 functions:
= Input format: [8 7] (signed). Input data range: [—1,1).
= Output format: [12 11] (signed). Output data range: [-1,1)
v' Input data is captured using the signal E. When the corresponding output data is available, the signal v is asserted.

8
Ia >0 0 ok Lt 1450 o< OB
E Eole7 | fY = 21y
D >
8
>0 0 |mirid LUT 224D Ol OB
"":3 [87] | g =sinx® |12 11] |
8
>0 0lmiiny] LUT e ylo oLz oc
C 1871 | RGO =e* |1211] }
LIt ’
. Input text file (Synthesis):
= The VHDL code and testbench for this system can be found here. nput textfile (Syn ef?bits
test.vhd — Top file where all the components are interconnected.
LUT group.vhd — File that includes all the LUTSs. f(-1)
LUT_NTtoNO.vhd — File that implement one LUT. FGO) = —x2 . 256
dffe.vhd . values
atb_test sim.vhd — Testbench f(127/128)
g(-1)
. 256
PROCEDURE g () =sin(x?) : values
= Select the proper parameters: (127/128)
v' test.vhd: NC=3, NI=8, NO=12, SAME="NO”. This generates the system 9 /
shown in the figure. This file reads the LUT contents from h(=1)
LUT _values8to12.txt file (you need to generate this file). o) o1 : 256
v atb_test sim.vhd: NC=3, NI=8, NO=12. For proper simulation. hix) =e values
h(127/128)

= Generate the input text file (Synthesis): LUT values8tol2.txt. The text file
contains the pre-computed values (12-bit signed FX numbers). It lists 256 entries per function (as per the figure). An L
separator is included between each 256-entry group.
You can use the provided MATLAB script (LUTvalGen8to12.m) to generate this file. This script requires the FX converter.

= Create a Vivado project and synthesize your circuit.
= Perform Functional Simulation:

v The testbench atb_test_sim.vhd will generate all possible input cases (from
00000000 to 11111111) and write the output results in a text file 12 bits | _ 12 bits_ 12 bits
(out_bench_NI8_NO12.txt). Three 12-bit words are written per output line
(256 lines), each 12-bit word represents the output of a different function. 256

v" Simulate the circuit until all the 256 input cases are processed. To verify the f&0 9 h(x) values
correct operation of your circuit, compare the values in the text file generated
by the Simulation with those in the input text file you generated for Synthesis.

Output text file (simulation):

= Upload (as a .zip file) the following files to Moodle (an assignment will be created). DO NOT submit the whole Vivado project.
v" VHDL code, VHDL testbench: You modified these files by assigning the proper VHDL parameters.
v Input text file (LUT _values8to12.txt) and output text file (out_bench_NI8_NO12.txt).

See attached .zip file: solutionsHW3pl.zip.

1 Instructor: Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_9/LUTsys.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2021

PROBLEM 2 (65 PTS)

= Design (write the VHDL code) for the iterative Circular CORDIC FX architecture with 16 iterations. i = 0,1,2,3,... 15.
X0, Yo, Zo: initial conditions. mode = ‘0’ — Rotation Mode. mode = ‘1’ — Vectoring Mode. (35 pts)

= Operation: When s = 1, x;,,, yin, Zin @and mode are captured. Data will then be processed iteratively. When data is ready
(done ='1"), output results appear in x,u¢, Yout Zout-

* Input/Intermediate/Output FX Format:
v Input values: x;,, Yin, Zin: [16 14]. Output values: x,u¢, Youts Zout: [16 14]
v Intermediate values: z;: [16 14]. x;,y;: [20 18]. Here, we use 4 extra bits (add four 0’s to the LSB) for extra precision.
v" We restrict the inputs x, = x;,,, yo = yin to [-1,1). Then, CORDIC operations need up to 2 integer bits (determined via

MATLAB simulation). For consistency, we use 2 integer bits for all input/intermediate/output data.
= Angles: They are represented in the format [16 14]. Units: radians. Pre-compute the values and store them in an LUT.
= Barrel shifters: Use the file mybarrelshift gen.vhd with SHIFTTYPE="ARTTHMETIC” (Signed data), N=20, swW=4, dir="1".

Xin Yin Zin s mode
16 16 16
[16 14] [16 14] [16 14]
4 4
20 Y& 0 0 Y 20 [16 14]
20 20 16 =
[20 18] s xyz [20 18] y CONTROL
v v - v v v -

F
Li
:
/
-
(@)
~
[0}
|
X
l<
N
F\
d
fYpo—
]
]
<&

data_X data Y data_2Z)
. v . v . v . |:: B
—>E —>E —>E <
> >
Xi|x i i Vi Y Zi| z
20 i 20

[20 18]

[20 18] 16, LUT

A

A
N
|
,4
N
| l€e—
-
Pﬂ
Q
:I
ol K
S
=
b

Fmmmmmmm m e e e e e - -

[20 18] next X next Y [20 18] next Z
. T 2 ey B
[16 14] [16 14] [16 14]
Y xout Y yout Y zZout done
FSM resetn=0

= Control: This circuit controls the iteration index i, as well as the internal signals:

CONTROL Y(19) Z(15)

1
1
1
1
mode 1
s
1
1 >
1
1
1
1
1
1

¢ s2
s
LN

|

IS '

' - | !

= w 1

i a Q_rrfq‘lh) i 1

QS

| I M

' counter ! 3

! Oto1l5 1

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2021

SIMULATION (Behavioral)
To represent the input data and LUT angles in Fixed-Point arithmetic (and vice versa), you can use any online tool or the
provided Fixed-Point to decimal converter (my_dec2fx.m, my_fx2dec.m, my_bitcmp.m).

v

A

For example, in MATLAB/Octave, you can run the following script that converts some data (e.g. an) as well as the angles

Tan~'(27) into 16-bit numbers in [16 14] signed FX representation:
An = 1.6468; you can use any number here

fx n = 16; fx p = 14; type = 's'; [16 14] signed FX representation
dat = my dec2fx(An, fx n, fx p, type);
disp(dat); % prints a 16-bit value representing An

for i = 1:16

angle (i) = atan(2”(-(i-1))); % angle (radians)

e i(i,1:16) = my dec2fx(angle(i), fx n, fx p, type):;

disp (e 1i(i,1:16)); prints a 16-bit value representing angle (i)
end

Circular CORDIC MATLAB/Octave model is also available. Make sure to use the ‘Basic CORDIC'. This script can be useful

to verify the hardware output data. The .zip file contains the following files:

v

run_examples_cordic.m: This is the top script that contains examples of how to emulate a CORDIC computation given
input data (the plotting part only work in MATLAB).

= Andillary files (functions): cordic_circular.m, get_scalefactor.m. They implement the CORDIC equations.
my_dec2fx.m, my_fx2dec.m, my_bitemp.m: This Fixed-Point to decimal converter is helpful to convert the LUT angles
and input data to their Fixed-Point representation (binary).

First testbench: Simulate the circuit for the cases shown in the table. You can use 4,, = 1.6468. Convert the real numbers
to the signed FX format [16 14]. For each case, verify that x;¢, y16, 216 reach the proper values. (10 pts)

A, = 1.6468 Input Data Expected Output Results
Xo Yo A XN YN ZN
Rotation Mode 0 1/A, /6 —sin (1/6) cos(mt/6) 0
(mode =0) 0 1/4, —n/3 —sin (—/3) cos(—1/3) 0
Vectoring Mode 0.8 0.8 0 A,+/0.8% + 0.82 0 tan~1(1)
(mode =1) 0.5 1 0 A,0.52 + 12 0 tan~'(2)

Second Testbench: Simulate the circuit reading input values (x,, yo, z,) from input text files and writing output values
(%16, Y16s Z16) ON an output text file. (20 pts). Your testbench must:

v

Read input values (x,, y,, z,) from two input text files (provided):

= in_benchR.txt: Data for Rotation Mode testing.
20 data points (x,, yo, z,). Data format: [16 14]. Each line per data point written as hexadecimals: | xo|yolzol.
Data set: x, = 0,y, = 1/4,,2o = — /2 tom/2. z,: 20 equally-spaced values between — /2 tom/2.
With this data set in the rotation mode, note that x,, > —sin(zy), y16 = cos(zp).

o in_benchV.txt: Data for Vectoring Mode testing.
20 data points (x,, yo, z,). Data format: [16 14]. Each line per data point written as hexadecimals: | xo|yolzol.
Data set: x, = 0.0 to 0.5,y, = 1,2, = 0. x4: 20 equally-spaced values between 0.0 to 0.5.
With this data set in the vectoring mode, note that x, — Ap\/x2 + ¥2, 216 = atan(ve/x,)-

Write output results (x4, y16, 216) ON out bench.txt. Data format: [16 14], each line per data point written as
hexadecimals: |x15|vis|z16|. The output text file should have 40 data points (20 from the rotation mode and 20 from
the vectoring mode). Using a handful of data points, verify that your results are correct.

Vivado tips:

= Make sure that the input text files are loaded as simulation sources.

s The output text file should appear in sim/sim_1/behav.

= To verify that the output results are correct, you need to represent data as fixed-point numbers. Use Radix —>
Real Settings in the Vivado simulator window.

For reference, the MATLAB script cordic_example_ece4710.m generates the input text files and reads the output textfile

(out_bench.txt) as specified here. It uses the Circular CORDIC MATLAB/Octave model.

Submit (as a .zip file) the generated files: VHDL design code, VHDL testbenches, and output text file to Moodle (an
assignment will be created). DO NOT submit the whole Vivado Project.

v

. zip file: Include only the .vhd and . txt files in a single folder (no subdirectories). Points will be deducted otherwise.

3 Instructor: Daniel Llamocca

http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_cordic_circular.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_cordic_circular.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4710: Computer Hardware Design Winter 2021

Output text file (out bench.txt): They were obtained with a very precise 4, value. To verify your values, just make
sure that they approximate the real values of the functions that the CORDIC algorithm approximates to.

Rotation Vectoring Rotation Vectoring
DFFD376A0001 | 773CFFFF3241 11 FAB93FC70002 6CFB0000540F
376C2000FFFF | 75DS5FFFF46DB 12 FO4A3EOAFFFD 6DB80000527D

1 3FFFFFFCFFFD | 6964FFFF6483 13 E64A3A9B0000 6E86FFFF50F7
2 3F1FO0A8B0000 | 696E000062D7 14 DCFF3594FFFF 6F6300004F6D
3 3C8814C60001 | 698A00006129 15 D4A52F13FFFE 7051FFFF4DED
4 38471E780000 | 69B800005F75 16 CD7E274EFFFF 714E00004C7B
5 3281274E0001 | 69F9FFFF5DD1 17 C7B71E750000 725AFFFF4B03
6 2B5A2F130002 | 6A4DFFFF5C2B 18 C37714C6FFFF 73750000499B
7 22FF3594FFFF | 6AB200005A7F 19 CODFOA880000 749E0000482F
8 19B23A9C0000 6B2A000058DB 20 COOOFFFAFFFD 75D5FFFF46DB
9 0FB53EOA0003 | 6BB40000573B

10 05463FC7FFFE | 6C4EFFFF55A1

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4710: Computer Hardware Design

Winter 2021

PROBLEM 3 (10 PTS)
Complete the timing diagram of the following circuit, which computes integer square root using a binary search approach.
n = 12. Note that rm = 1if 2 > D,else 0, re = 1 if r# = D, else 0. Shift registers: serial input is ‘0’. The value of D is an
unsigned decimal. FSM: j is an embedded counter, j changes on the clock edge.

EnlE ELE

S
10 €%

resetn

DI s FSM resetn=0
01000...0 2np
2n$
L 2
00010...0 S_f>\ 1 0/ 1
Z”Jyf RIGHT data_sqr —*
E L e e
> L > >
a2]_rkz D
Y A l« v
rm
+ < comp .
]
re T
2np Fd
-
Er FSM e
2 ol
b P>
Al o U
| sr Ei Li
done

l 1
clock ' I ; I ' :

L

DI

R N Y N SN R PR

S><
N
IS
e T T T =" 1T
N
w
oD e S

P G- G~ >~ O N R R
N

1

1

1

1

1

Tk ! X T11 X T10 !‘X Ty X s X r7 X Te !X s Ta T3 T2 LS !

E | 2n2, | | | | | E E

ax ' X 220} 29 X 28 X 27 X 26) 25 ¢ 22 2° X 0 :

: | g2n-4) | | | ; | i : :

a2 : X 220 X 218 D(216 X 214 X212 sz :X 28 26 24 22 :X 20 :X 0 :

| | | | | 1 1 | 1 | |

1 ,2211.—2, 1 1 1 ! 1 : 1 1

e Kb N X8 N Krf e X2 o Xod X kP X od :
I e T e e i
3 _9_L__°__J__1_1__L_1_Q_l__?__l___8__L_?___i__s___I___5__l__4___l__3:__L__2__1:__%__I__Q__l__o___l__}%_:
1 1 1 1 1 1 N 1 1 1 1 L 1 1 1 1
Er | | i i i i i ! i i i i ! l| | | |
1 . X X X X 1 : : : : : 1 1 1 1
rm) ! | | | | | |))) !))))
B S
state 51! s1 !s2 !'s2 !'s2 ! s2 !'s2 ,s2 ! s2! s2 ! s2 ! s2 ., s2! s3 ! s1 ! s1 |
e s It T (niaiiet st Rl il Bty (it st St Bty nlaiaiaie |
1 1 1 1 1 1 | 1 1 1 1 ! 1 1
done 1 1 1 1 1 1 I 1 1 1 1 : 1 1
| | ! .

1 T10 T9 T8 7 Te s T4 3 2 " To
2048 1024 512 256 128 64 32 48 56 60 62 63

PROBLEM 4 (10 PTS)
Attach your Project Status Report (no more than 1 page, single-spaced, 2 columns, only one submission per group). This
report should contain the project title, a brief project description, and the current status of the project, including a block
diagram of your system. For formatting, you can use the following template (Final Project - Report Template.docx).

Instructor: Daniel Llamocca

	Problem 1 (15 pts)
	Procedure

	Problem 2 (65 pts)
	Problem 3 (10 pts)
	Problem 4 (10 pts)

